FORMULAE AND DATA SHEET

Financial Mathematics

Simple interest

$$I = Prn$$

P is initial amount

r is interest rate per period, expressed as a decimal

n is number of periods

Compound interest

$$A = P(1+r)^n$$

A is final amount

P is initial amount

r is interest rate per period, expressed as a decimal

n is number of compounding periods

Present value and future value

$$PV = \frac{FV}{(1+r)^n}, \qquad FV = PV(1+r)^n$$

r is interest rate per period, expressed as a decimal

n is number of compounding periods

Straight-line method of depreciation

$$S = V_0 - Dn$$

S is salvage value of asset after n periods

 V_0 is initial value of asset

D is amount of depreciation per period

n is number of periods

Declining-balance method of depreciation

$$S = V_0 (1-r)^n$$

S is salvage value of asset after n periods

 V_0 is initial value of asset

 is depreciation rate per period, expressed as a decimal

n is number of periods

Data Analysis

Mean of a sample

$$\overline{x} = \frac{\text{sum of scores}}{\text{number of scores}}$$

z-score

For any score x,

$$z = \frac{x - \overline{x}}{s}$$

 \overline{x} is mean

s is standard deviation

Outlier(s)

score(s) less than $\,Q_L - 1.5 \times IQR\,$

or

score(s) more than $Q_{IJ} + 1.5 \times IQR$

 Q_I is lower quartile

 Q_{II} is upper quartile

IQR is interquartile range

Least-squares line of best fit

 $y = \text{gradient} \times x + y\text{-intercept}$

gradient = $r \times \frac{\text{standard deviation of } y \text{ scores}}{\text{standard deviation of } x \text{ scores}}$

y-intercept = \overline{y} – (gradient $\times \overline{x}$)

r is correlation coefficient

 \overline{x} is mean of x scores

 \overline{y} is mean of y scores

Normal distribution

 approximately 68% of scores have z-scores between –1 and 1

 approximately 95% of scores have z-scores between –2 and 2

• approximately 99.7% of scores have z-scores between –3 and 3

-1 -

Spherical Geometry

Circumference of a circle

$$C = 2\pi r$$
 or $C = \pi D$

r is radius

D is diameter

Arc length of a circle

$$l = \frac{\theta}{360} 2\pi r$$

r is radius

 θ is number of degrees in central angle

Radius of Earth

(taken as) 6400 km

Time differences

For calculation of time differences using longitude:

15° = 1 hour time difference

Area

Circle

$$A = \pi r^2$$

r is radius

Sector

$$A = \frac{\theta}{360} \pi r^2$$

r is radius

heta is number of degrees in central angle

Annulus

$$A = \pi \left(R^2 - r^2 \right)$$

R is radius of outer circle

r is radius of inner circle

Trapezium

$$A = \frac{h}{2}(a+b)$$

h is perpendicular height a and b are the lengths of the parallel sides

Area of land and catchment areas

unit conversion: 1 ha = $10\ 000\ \text{m}^2$

Surface Area

Sphere

$$A = 4\pi r^2$$

r is radius

Closed cylinder

$$A = 2\pi r^2 + 2\pi rh$$

r is radius

h is perpendicular height

Volume

Prism or cylinder

$$V = Ah$$

A is area of base

h is perpendicular height

Pyramid or cone

$$V = \frac{1}{3}Ah$$

A is area of base

h is perpendicular height

Volume and capacity

unit conversion: $1 \text{ m}^3 = 1000 \text{ L}$

Approximation Using Simpson's Rule

Area

$$A \approx \frac{h}{3} \left(d_f + 4d_m + d_l \right)$$

h is distance between successive measurements

 d_f is first measurement

 d_m is middle measurement

 d_i is last measurement

Volume

$$V \approx \frac{h}{3} \Big\{ A_L + 4A_M + A_R \Big\}$$

h is distance between successive measurements

 A_I is area of left end

 A_{M} is area of middle

 A_R is area of right end

Trigonometric Ratios

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$$

Sine rule

In $\triangle ABC$,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Area of a triangle

In $\triangle ABC$,

$$A = \frac{1}{2}ab\sin C$$

Cosine rule

In $\triangle ABC$,

$$c^2 = a^2 + b^2 - 2ab\cos C$$

or

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Units of Memory and File Size

1 byte = 8 bits

 $1 \text{ kilobyte} = 2^{10} \text{ bytes} = 1024 \text{ bytes}$

1 megabyte = 2^{20} bytes = 1024 kilobytes

1 gigabyte = 2^{30} bytes = 1024 megabytes

1 terabyte = 2^{40} bytes = 1024 gigabytes

Blood Alcohol Content Estimates

$$BAC_{\text{male}} = \frac{10N - 7.5H}{6.8M}$$

or

$$BAC_{\text{female}} = \frac{10N - 7.5H}{5.5M}$$

N is number of standard drinks consumed

H is number of hours of drinking

M is person's mass in kilograms

Distance, Speed and Time

$$D = ST$$
, $S = \frac{D}{T}$, $T = \frac{D}{S}$

average speed =
$$\frac{\text{total distance travelled}}{\text{total time taken}}$$

Probability of an Event

The probability of an event where outcomes are equally likely is given by:

$$P(\text{event}) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}$$

Straight Lines

Gradient

$$m = \frac{\text{vertical change in position}}{\text{horizontal change in position}}$$

Gradient-intercept form

$$y = mx + b$$

m is gradient

b is y-intercept

BLANK PAGE