FORMULAE AND DATA SHEET

Financial Mathematics

Simple interest

$$
I=\operatorname{Prn}
$$

P is initial amount
r is interest rate per period, expressed as a decimal
n is number of periods

Compound interest

$$
A=P(1+r)^{n}
$$

A is final amount
P is initial amount
r is interest rate per period, expressed as a decimal
n is number of compounding periods

Present value and future value

$$
P V=\frac{F V}{(1+r)^{n}}, \quad F V=P V(1+r)^{n}
$$

r is interest rate per period, expressed as a decimal
n is number of compounding periods

Straight-line method of depreciation

$$
S=V_{0}-D n
$$

S is salvage value of asset after n periods
V_{0} is initial value of asset
D is amount of depreciation per period
n is number of periods

Declining-balance method of depreciation

$$
S=V_{0}(1-r)^{n}
$$

S is salvage value of asset after n periods
V_{0} is initial value of asset
r is depreciation rate per period, expressed as a decimal
n is number of periods

Data Analysis

Mean of a sample

$$
\bar{x}=\frac{\text { sum of scores }}{\text { number of scores }}
$$

z-score

For any score x,

$$
z=\frac{x-\bar{x}}{s}
$$

\bar{x} is mean
s is standard deviation

Outlier(s)

score(s) less than $Q_{L}-1.5 \times I Q R$ or
score(s) more than $Q_{U}+1.5 \times I Q R$
Q_{L} is lower quartile
Q_{U} is upper quartile
$I Q R$ is interquartile range

Least-squares line of best fit

$$
y=\text { gradient } \times x+y \text {-intercept }
$$

gradient $=r \times \frac{\text { standard deviation of } y \text { scores }}{\text { standard deviation of } x \text { scores }}$
y-intercept $=\bar{y}-($ gradient $\times \bar{x})$
r is correlation coefficient
\bar{x} is mean of x scores
\bar{y} is mean of y scores

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

Spherical Geometry

Circumference of a circle

$$
C=2 \pi r \quad \text { or } \quad C=\pi D
$$

r is radius
D is diameter

Arc length of a circle

$$
l=\frac{\theta}{360} 2 \pi r
$$

r is radius
θ is number of degrees in central angle

Radius of Earth

(taken as) 6400 km

Time differences

For calculation of time differences using longitude:
$15^{\circ}=1$ hour time difference

Area

Circle

$$
A=\pi r^{2}
$$

r is radius

Sector

$$
A=\frac{\theta}{360} \pi r^{2}
$$

r is radius
θ is number of degrees in central angle

Annulus

$$
A=\pi\left(R^{2}-r^{2}\right)
$$

$R \quad$ is radius of outer circle
r is radius of inner circle

Trapezium

$$
A=\frac{h}{2}(a+b)
$$

h is perpendicular height
a and b are the lengths of the parallel sides

Area of land and catchment areas

unit conversion: $1 \mathrm{ha}=10000 \mathrm{~m}^{2}$

Surface Area

Sphere

$$
A=4 \pi r^{2}
$$

r is radius

Closed cylinder

$$
A=2 \pi r^{2}+2 \pi r h
$$

r is radius
h is perpendicular height

Volume

Prism or cylinder

$$
V=A h
$$

A is area of base
h is perpendicular height

Pyramid or cone

$$
V=\frac{1}{3} A h
$$

A is area of base
h is perpendicular height

Volume and capacity

unit conversion: $1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

Approximation Using Simpson's Rule

Area

$$
A \approx \frac{h}{3}\left(d_{f}+4 d_{m}+d_{l}\right)
$$

$h \quad$ is distance between successive measurements
d_{f} is first measurement
d_{m} is middle measurement
d_{l} is last measurement

Volume

$$
V \approx \frac{h}{3}\left\{A_{L}+4 A_{M}+A_{R}\right\}
$$

h is distance between successive measurements
A_{L} is area of left end
A_{M} is area of middle
A_{R} is area of right end

Trigonometric Ratios

$\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}$

Sine rule

In $\triangle A B C$,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Area of a triangle

In $\triangle A B C$,

$$
A=\frac{1}{2} a b \sin C
$$

Cosine rule

In $\triangle A B C$,

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

or
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Units of Memory and File Size

$$
\begin{aligned}
1 \text { byte } & =8 \text { bits } \\
1 \text { kilobyte } & =2^{10} \text { bytes }=1024 \text { bytes } \\
1 \text { megabyte } & =2^{20} \text { bytes }=1024 \text { kilobytes } \\
1 \text { gigabyte } & =2^{30} \text { bytes }=1024 \text { megabytes } \\
1 \text { terabyte } & =2^{40} \text { bytes }=1024 \text { gigabytes }
\end{aligned}
$$

Blood Alcohol Content Estimates

$$
\begin{aligned}
& B A C_{\text {male }}=\frac{10 \mathrm{~N}-7.5 \mathrm{H}}{6.8 M} \\
& \text { or } \\
& B A C_{\text {female }}=\frac{10 \mathrm{~N}-7.5 \mathrm{H}}{5.5 \mathrm{M}}
\end{aligned}
$$

N is number of standard drinks consumed
H is number of hours of drinking
M is person's mass in kilograms

Distance, Speed and Time

$$
D=S T, \quad S=\frac{D}{T}, \quad T=\frac{D}{S}
$$

average speed $=\frac{\text { total distance travelled }}{\text { total time taken }}$
stopping distance $=\left\{\begin{array}{c}\text { reaction-time } \\ \text { distance }\end{array}\right\}+\left\{\begin{array}{c}\text { braking } \\ \text { distance }\end{array}\right\}$

Probability of an Event

The probability of an event where outcomes are equally likely is given by:

$$
P(\text { event })=\frac{\text { number of favourable outcomes }}{\text { total number of outcomes }}
$$

Straight Lines

Gradient

$$
m=\frac{\text { vertical change in position }}{\text { horizontal change in position }}
$$

Gradient-intercept form

$$
y=m x+b
$$

m is gradient
b is y-intercept

BLANK PAGE

- 4 -

